Solving Systems Continued: Word Problems

p. 117 \#12

The sides of an equilateral triangle measure 10 cm . Suppose we have a rectangle with the same area and the same perimeter as this triangle.
a) Translate this situation into a system of equations.
b) Solve the system of equations to demonstrate that such a rectangle exists, and find its dimensions.

Practice 6.3 (cont'd)
5. a) Trajectories of an object

b) The object is found at a height of 0.95 m and 4.2 when it crosses the laser beam.
6. a) $(-2-\sqrt{18},-8-3 \sqrt{18})$ and $(-2+\sqrt{18},-8+3 \sqrt{18})$.
b) No solution.
c) $(-1,3)$ and $\left(\frac{5}{2},-\frac{1}{2}\right)$.
d) $\left(\frac{429}{198},-\frac{121}{198}\right)$ and (4, 0).
e) $(1,-14)$ and ($6,-29$).
f) $\left(1, \frac{11}{2}\right)$ and $\left(\frac{11}{2}, 1\right)$.
g) $\left(\frac{3-\sqrt{109}}{10}, \frac{118-6 \sqrt{109}}{25}\right)$ and $\left(\frac{3+\sqrt{109}}{10}, \frac{118+6 \sqrt{109}}{25}\right)$.
h) $\left(-1,-\frac{8}{9}\right)$
i) $\left(\frac{1}{3},-1\right)$
7. a) $x+y=6.2$
$x^{2}+y^{2}=25$
b) The rectangle measures 1.4 units by 4.8 units.
c) 1) Yes. The dimensions of the rectangle must be ($3.1 \pm \sqrt{8.29}$) units, therefore approximately 5.98 units for the length and 0.22 units for the width.
2) No, it is impossible. By solving the system of equations $x+y=6$.

$$
x^{2}+y^{2}=49, \text { you only obtain ordered }
$$ pairs of which one of the coordinates is neqative. You also know that the diagonal of a rectangle can never be greater than the sum of the measurements of its length and width because, in a triangle, the sum of the measurements of two sides is always greater than the measurement of the third side.

