3.

Sometimes comparison/graphing isn't a very efficient way to find a point of intersection...
egg. p. 106 \# 1. d)

$$
\begin{array}{lc}
y=5-3 x \\
3 x+2 y=1 \\
3 x+2(11)=1 & \\
3 x+2(5-3 x)=1 & \\
3 x+10-6 x=1 & (1) y=5-3(3) \\
-3 x=1-10 & y=5-9 \\
\frac{-3 x}{-3}=\frac{-9}{-3} & y=-4 \\
x=3 &
\end{array}
$$

Substitution Method

- similar to comparison except that only one of the variables is isolated

You can solve a system of equations through substitution by following these steps:

1. Pick an equation and isolate one of the variables.
2. Plug in (substitute) the expression for the variable in the other equation.
3. Simplify and solve.
4. Plug in your answer into one of the original equations.
5. Solve.
e.g.p. 106 \# 1. d)

$$
\left.\begin{array}{l}
y=51 \\
3 x \\
3 x \\
+2
\end{array}\right)=6
$$

$$
1(x=5-3 y
$$

$$
\text { (2) } 3 x+2 y=1
$$

$$
x=6
$$

$$
\begin{aligned}
& 3 x+2 y=1 \\
& 3(5-3 y)+2 y=1
\end{aligned}
$$

1. $x=5-3 y$
2. $3(5.3 y)+2 y=1$
3. $15-9 y+2 y=1$

$$
15-7 y=1
$$

$$
y=2
$$

$$
-7 y=1-15
$$

$$
\text { 4. } \begin{aligned}
x & =5-3 y \\
5 \cdot & x=5-3(2) \\
y & =5-6 \\
x & =-1
\end{aligned}
$$

Try it out...
p. 106 \# 1. f)

$$
\begin{aligned}
& 2 x+5 y=30 \\
& 2 y=\frac{1-3 x}{2} \\
& y=\frac{1}{2}-\frac{3 x}{2} \\
& y=0.5-1.5 x
\end{aligned}
$$

p. 106 \#2

The area of the trapezoid is 30 square units. The big base measures 3 units less than double the small base.
a) Represent the situation using a system of equations.
b) Find the lengths of the two bases of the trapezoid

