Review: Quadratics

$$x^2 + 2x + 1 = 0$$

Ways to solve:

- change to vertex form $a(x-h)^2 + k$ where x =
- factor (sum, product)
- discriminate method/quadratic formula

Factoring to Solve

Two numbers where:

$$sum = b$$

$$product = c$$

$$y = x^2 + 5x + 4$$

Quadratic Formula

Systems of Equations and Quadratics

1.
$$y = x^2$$

у	Х

$$2. y = 0$$

How many points of intersection do we have?

Does this change if we change one of the equations?

Discriminant for $ax^2 + bx + c = 0$ is

$$x^2 = 0$$

same as
$$x^2 + 0x + 0 = 0$$

$$x^2 + 1 = 0$$

$$x^2 - 1 = 0$$

Suppose we have $y = x^2$ and y = x