Review: Quadratics

$$
x^{2}+2 x+1=0
$$

Ways to solve:

- change to vertex form $a(x-h)^{2}+k$ where $x=$
- factor (sum, product)
- discriminate method/quadratic formula

Factoring to Solve

Two numbers where:
sum $=b$
product $=\mathrm{c}$
$y=x^{2}+5 x+4$

Quadratic Formula

Systems of Equations and Quadratics

1. $y=x^{2}$

y	x

2. $y=0$

How many points of intersection do we have?

Does this change if we change one of the equations?

Discriminant for $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ is

$$
b^{2}-4 a c
$$

$$
x^{2}=0 \quad \text { same as } \quad x^{2}+0 x+0=0
$$

$x^{2}+1=0$
$x^{2}-1=0$

Suppose we have $y=x^{2}$ and $y=x$

