Which would you pick: $\$ 2$ today, doubled each following day for a week or $\$ 150$ right now?

Exponential Notation

```
            23}=
        base exponent = power
```

Remember that $2^{3}=2 \times 2 \times 2$ and NOT 2×3

What if we have $2^{1 ?}$? Or 2^{0} ? Or 2^{-1} ?

$$
\begin{array}{ll}
2^{1}=2 & 2^{0}=1 \quad 2^{-1}=\frac{1}{2} \\
2^{-2}=\frac{1}{4} & 2^{2}=4=\frac{4}{1} \sum_{a} \\
a^{1}=a \\
\text { reciprocal } & a^{0}=1
\end{array}
$$

What if the exponent is a fraction?

$$
\begin{aligned}
& 4^{\frac{1}{2}}=? \sqrt[2]{4^{\prime}} \quad 4 \times \frac{1}{2} a^{\frac{1}{2}}= \\
& a^{\frac{1}{2}}=\sqrt{a} \quad \begin{array}{l}
\text { Note: the number can } \\
\text { NOT be negative }
\end{array} \\
& 4^{\frac{1}{3}}=\sqrt[3]{4} \quad 4^{\frac{4}{9}}=\sqrt[9]{4^{4}} \\
& a^{\frac{1}{3}}=\sqrt[3]{a} \quad \text { Can'a"be negative here? } \\
& (-8)^{\frac{1}{3}}=-2 \\
& -2 \cdot-2-2=-8
\end{aligned}
$$

Scientific Notation

- helps us write very small and very big numbers more quickly
e.g. the sun is 150000000 km away from the earth vs. the sun is $1.5 \times 10^{8} \mathrm{~km}$ from the earth

Why it works

Multiplying or dividing by 10 helps us to move decimal places by putting in more zeros.

How it works

1. Find the first non-zero digit.
2. Count how many numbers there are before or after it until you get to where the decimal would be. This is your exponent.
3. Put the decimal right after the first non-zero digit, and copy the numbers until there are only zeros left.
4. Follow this number with $\times 10$ with the exponent you got in 2 .

HW: p. 101-103 \#1, 2, 5, 9

