## Slope of a Line

- ratio of vertical vs. horizontal change of a line (rise over run)

$$
\begin{gathered}
\text { Slope } \\
a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{gathered}
$$



Slope for vertical lines: does not exist

## Other key terms:

x-intercept: where the line meets the x-axis
$y$-intercept: where the line meets the $y$-axis

## Parallel and Perpendicular Lines



Parallel lines: Same slope

Compare the slopes of the two lines in each of the following:


Points: $(0,0)$ and $(3,1)$
$(0,0)$ and $(-2,6)$
$a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=-3$
$(0,0)$ and $(2,4)$
$c=-\frac{1}{2}$

$$
a=2
$$

Perpendicular lines: Slopes are negative reciprocals

$$
\text { reciprocal: } \frac{1}{3} \rightarrow \frac{3}{1}
$$

Equation of a Line

Function form: can be used for any non-vertical line $y=a x+b \quad(x=3)$ vertical line
 e.g. p. 94 (initial value)
2.a) $A(4,2)$ and $B(5,-1)$

Find the slope, equation, and intercepts.

$$
\begin{aligned}
& a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-2}{5-4}=-3 \\
& \text { (2) } y=a x+b \\
& y=-3 x+b \quad \text { plug in points, } \\
& 2=-3(4)+b \quad \text { slope } \\
& 2=-12+b \\
& b=14 \\
& y=-3 x+14 \\
& y \text {-int: } 14 \\
& x \text {-int: }-\frac{b}{a}=\frac{14}{3}=4 \frac{2}{3}=4.67
\end{aligned}
$$

Equation of a Line

General Form: can be used to describe any line

$$
\begin{aligned}
& A x+B y+C=0 \\
& 1 x+0 y-3=0 \quad x=3 \\
& \text { Slope:- } \frac{A}{B} \quad x-\frac{C}{B}=0=0 \text {-intercept:- } \frac{C}{A} \\
& x=3^{B} \\
& \text { Vertical line } \\
& \text { 1. Find equation in function form. } \\
& \text { 2. Rearrange to get rid of fractions. } \\
& \text { 3. Rearrange so all the terms are on the same side. } \\
& \text { ecg. p. } 94 \\
& \text { 2.a) } A(4,2) \text { and } B(5,-1) \\
& \text { 1. } y=-3 x+14 \\
& \text { 2. } 3 x+y-14=0 \quad y=-\frac{3}{2} x+14 \\
& \text { 3. } 0=-3 x-1 y+14 y=-3 x+28 \\
& A C_{B} \quad y=\frac{4}{2} x+14 \\
& \text { Slope: } \\
& -\frac{A}{B}=\frac{-(-3)}{-1} \\
& =-3
\end{aligned}
$$

HW: p. 94 \#1, 2, 4
$\square$

Perpendicular bisector: perpendicular line through the midpoint


